
Extensions of Decision-Theoretic

Troubleshooting: Cost Clusters and Precedence
Constraints

Václav Ĺın�

Institute of Information Theory and Automation of the ASCR,
Pod Vodárenskou věž́ı 4, CZ-182 08, Prague, Czech Republic

lin@utia.cas.cz

Abstract. In decision-theoretic troubleshooting [5,2], we try to find
a cost efficient repair strategy for a malfunctioning device described by
a formal model. The need to schedule repair actions under uncertainty
has required the researchers to use an appropriate knowledge represen-
tation formalism, often a probabilistic one.

The troubleshooting problem has received considerable attention over
the past two decades. Efficient solution algorithms have been found for
some variants of the problem, whereas other variants have been proven
NP-hard [5,2,4,17,16].

We show that two troubleshooting scenarios — Troubleshooting with
Postponed System Test [9] and Troubleshooting with Cost Clusters with-
out Inside Information [7] — are NP-hard. Also, we define a troubleshoot-
ing scenario with precedence restrictions on the repair actions. We show
that it is NP-hard in general, but polynomial under some restrictions
placed on the structure of the precedence relation. In the proofs, we use
results originally achieved in the field of Scheduling. Such a connection
has not been made in the Troubleshooting literature so far.

Keywords: Computational Complexity, Dynamic Programming,
Decision-Theoretic Troubleshooting, Scheduling.

1 Introduction

Suppose a man-made device failed to work – the exact cause of the failure is un-
known, and the possible steps to fix it are costly and not 100% reliable. Any
attempt to resolve the problem may fail, but the incurred cost has to be paid
in any case. Solving problems such as this one has lead to development of the field
of decision-theoretic troubleshooting [5,2]. The need to decide under uncertainty
has necessitated the use of an appropriate formalism. Bayesian networks have
been adopted for their clear semantics and computational tractability. The trou-
bleshooting problem is known to be polynomial in few special cases and NP-hard

� This work was supported by the Ministry of Education of the Czech Republic through
grant 1M0572 and by the Czech Science Foundation through grant ICC/08/E010.

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 206–216, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Extensions of Decision-Theoretic Troubleshooting 207

in others [5,2,4,17,16]. Decision-theoretic troubleshooting has been successfully
applied in the area of printer diagnosis and maintenance [2,13].

In this paper, we build on earlier work published in [4,7,9] and provide new
results on computational complexity of the problems studied in the cited pa-
pers. In the first part – Section 2 – we give an overview of the troubleshooting
scenarios studied in earlier literature. Specifically, Section 2.1 describes a very
basic troubleshooting scenario taken from [5,2,4]. In the same Section, we define
a novel scenario by adding a precedence relation on the troubleshooting actions.
In Section 2.2, we review a generalization of basic troubleshooting — Trou-
bleshooting with Postponed System Test – studied recently in [9], and describe
a novel Dynamic Programming solution. In Section 2.3 we introduce a more gen-
eral scenario of Troubleshooting with Cost Clusters without Inside Information,
originally defined in paper [7].

The main results of the paper are found in Section 3. In Section 3.2, we show
that troubleshooting with a postponed system test is NP-hard. As a corollary,
troubleshooting with cost clusters without inside information is shown to be
NP-hard in the same Section. In Section 3.3, we turn to troubleshooting with
precedence constraints and show that it is NP-hard, but solvable in polynomial
time when the precedence relation has a structure of series parallel directed graph
[6,15]. In the NP-hardness proofs, we use results achieved originally in the field
of Scheduling. We consider this to be one of the contributions of the paper,
since such a connection has not been made in the Troubleshooting literature so
far. In Section 4, we sum up the results and conclude the paper by suggesting
directions for future research.

2 Troubleshooting Scenarios

Before proceeding with the formal definitions, we will illustrate the troubleshoot-
ing scenarios on a simple example inspired by [7,17].

Imagine you are printing a report but the colors come out very light. You have
several options to choose from: restart the printer, change the print settings, re-
seat the toner cartridge or get a new cartridge altogether. These actions differ
both in their difficulty and in the likelihood of fixing the print problem. You
need to decide how to sequence the available repair actions so that the “expected
difficulty level” of the repair is as low as possible. This kind of problem is solved
in the basic troubleshooting scenario, described in Section 2.1.

Continuing with our print example, imagine that the printing itself is very
expensive – you have to think twice before performing a test print to check that
the repair actions have actually helped. Troubleshooting problems such as this
one are defined in Section 2.2.

To make the example yet more complicated, assume that you are troubleshoot-
ing a complex industrial printer and some of the repair actions are only available
after disassembling parts of the machine – and different actions may require dif-
ferent parts to be disassembled. To perform a test print, the machine has to be
reassembled. Section 2.3 covers problems of this kind.

208 V. Ĺın

2.1 Basic Troubleshooting

The Basic Troubleshooting problem is given by

– a set F = {F1, . . . , Fm} of possible faults,
– a set A = {A1, . . . , An}, n ≥ m, of available repair steps,
– a probabilistic model P (F ∪A) describing interactions between the elements

of A and F .

Each action Ai bears a constant cost c(Ai) and can either fail (Ai = 0) or fix
the fault (Ai = 1). The following assumptions are made:

– There is exactly one fault present in the modeled system.
– Each action addresses exactly one fault.
– The model P (F∪A) satisfies conditional independence assumptions encoded

by the Bayesian network shown in Figure 1. Specifically, the actions are
conditionally independent given the faults.

F1 F2 Fm

A1 A2 An

F

Fig. 1. Bayesian network encoding conditional independence of actions given faults.
F is the fault variable with possible values f1, . . . , fm. Variables F1, . . . , Fm are Boolean
indicators with P (Fi = 1|F = fi) = 1. Variables A1, . . . , An are also Boolean. Each Aj

has exactly one parent in the graph.

We assume that no new faults are introduced during the troubleshooting session,
and the result of any action stays the same during a session. These two last
assumptions are only implicit in most of the papers on troubleshooting. They
are explicitly stated only in more recent papers, such as [9].

Let π = {π(1), . . . , π(n)} denote a permutation of indices 1, . . . , n; then
the troubleshooting strategy is a sequence Aπ(1), . . . , Aπ(n) of actions performed
until the fault is fixed or all actions are exhausted. Thus, the action Aπ(i)

will be performed only if all the preceding actions fail, that is, Aj = 0 for
j = π(1), . . . , π(i − 1). To solve the troubleshooting problem, we have to find
a repair strategy with the lowest Expected Cost of Repair:

ECR(Aπ(1), · · · , Aπ(n)) =
n∑

i=1

c(Aπ(i)) · P
(∧

j<i

{Aπ(j) = 0}
)

Extensions of Decision-Theoretic Troubleshooting 209

The following proposition describes an easy method of finding the optimal trou-
bleshooting sequence and computing its ECR.

Proposition 1 (Jensen et al., 2001 [4]). Under the assumptions of

– single fault,
– each action addressing exactly one fault,
– conditional independence of actions given the faults,

the optimal troubleshooting sequence is found in O(n · log n) time by ordering
the actions so that ratio values P (Aj = 1)/c(Aj) are decreasing where

P (Aj = 1) =
∑

i

P (Aj = 1|F = fi) · P (F = fi).

Further, the ECR can be computed as

ECR(Aπ(1), · · · , Aπ(n)) =
n∑

i=1

c(Aπ(i)) ·
(
1 −

∑
j<i

P (Aπ(j) = 1)
)
.

Proof. See Proposition 1, Proposition 2 and Theorem 1 in [4]. The O(n · log n)
time requirement is given by the complexity of sorting (see, e.g., [11]). ��

The assumptions of Proposition 1 are quite restrictive; however, weakening them
often yields an NP-hard scenario as shown in papers [17,16].

The single fault assumption is relaxed in paper [14], where multiple faults
are considered. However, it is assumed that the faults as well as actions are
independent. The optimal sequence is found by ordering the actions so that the
ratio values

P (Aj = 1)
c(Aj) · (1 − P (Aj = 1))

are decreasing.

Troubleshooting with Precedence Constraints. In some applications, there
may be restrictions imposed on the order of troubleshooting actions – some
of the actions become available only after performing some other actions. A re-
striction on the order of actions does not typically correspond to the probabilistic
dependence of actions. For an example of such an application, see Section 4.1 in
paper [4].

Formally, we assume that there is a precedence relation described by an acyclic
directed graph G with vertices labeled by the actions from A. A troubleshooting
sequence Aπ(1), · · · , Aπ(n) is valid only if Aπ(j) is not a predecessor of Aπ(i)

in G for all i < j. We will show in Section 3.3 that Basic Troubleshooting with
Precedence Constraints is NP-hard for a general acyclic directed graph G, but
is solvable in polynomial time for a wide class of series parallel graphs.

210 V. Ĺın

2.2 Troubleshooting with Postponed System Test

Following [9], we add the assumption that, after performing a troubleshoot-
ing action, we do not know whether the action has solved the problem. We
have to perform a system test, requiring additional cost cD, to find out whether
the problem has been fixed. The need to schedule system tests complicates con-
struction of the optimal sequence – when the system test is postponed too much,
we risk performing needless repair actions; when we perform the test too early
to check the system state, we risk missing a necessary repair action.

To solve the troubleshooting problem, we construct an ordered partition A1,
. . . ,Ak of the set A.1 Actions of the sets A1,A2, . . . are performed sequentially.
After performing all the actions of the set Aj (j = 1, 2, . . .), we perform the sys-
tem test to check whether the actions contained in Aj have fixed the problem.
The cost of Aj including the system test is

c(Aj) = cD +
∑

A∈Aj

c(A).

We seek an ordered partition minimimizing the ECR:

ECR(A1, . . . ,Ak) =
k∑

i=1

c(Ai) · P
(∧
j<i,A∈Aj

{A = 0}). (1)

We shall write P (Aj = 1) as an abbreviation for P
(∨

A∈Aj
{A = 1}). The fol-

lowing proposition simplifies computation of the ECR.

Proposition 2 (Ottosen and Jensen, 2010 [4]). Under the assumptions of
Proposition 1, the ECR can be computed as

ECR(A1, . . . ,Ak) =
k∑

i=1

c(Ai) ·
(
1 −

∑
j<i

P (Aj = 1)
)
,

where P (Aj = 1) =
∑

A∈Aj
P (A = 1).

Dynamic Programming. In [9], the authors give Θ(n3) heuristics for Trou-
bleshooting with Postponed System Test and an Θ(n3 · n!) exhaustive search
algorithm. In this paragraph, we will show that by using Dynamic Program-
ming, the time requirements of the exhaustive search can be traded for memory
requirements.2 We will use a recursive version of the definition of ECR, equiv-
alent to the one given by Equation 1.

Definition 1 (Conditional ECR). Let A be the set of available atomic actions
and let A1, . . . ,Ak be an ordered partition of A. For 1 ≤ i ≤ k, denote

εi =
∨

j≤i,A∈Aj

{A = 0},

1 That is, A =
⋃k

j=1 Aj , and ∀i�=jAi ∩ Ai = ∅.
2 Dynamic Programming has already been used for troubleshooting in [17].

Extensions of Decision-Theoretic Troubleshooting 211

and put ε0 = ∅. For 1 ≤ i ≤ k, define Conditional Expected Cost of Repair as

ECR(Ai, ...,Ak|εi−1) = c(Ai) + P (Ai = 0|εi−1) · ECR(Ai+1, ...,Ak|εi).

and put ECR(∅|εk) = 0.

Proposition 3 (Bellman Principle). Ordered partition A1, . . . ,Ak is optimal
if and only if each subsequence Ai, . . . ,Ak, 1 ≤ i ≤ k, is optimal with respect
to εi−1, i.e., there is no other ordered partition s defined on ∪k

j=iAj such that

ECR(s|εi−1) < ECR(Ai, . . . ,Ak|εi−1).

However trivial, we include proof of the “if” direction.

Proof. Assume that A1, . . . ,Ak has a subsequence Ai, . . . ,Ak which is not opti-
mal with respect to εi−1. In that case there exists another sequence s, defined on⋃k

j=i Aj , optimal with respect to εi−1. Concatenated sequence A1, . . . ,Ai−1, s
has lower ECR than the original ordered partition. ��
The Dynamic Programming algorithm works in a bottom-up fashion, construct-
ing candidate ordered partitions from the last subset. In each round, candi-
date subsequences that are not conditionally optimal are pruned. Correctness
of the Dynamic Programming algorithm follows from Proposition 3. At the i-th
round of the algorithm, 2n−i+1 candidates are generated, the time requirements
are therefore Θ(2n + 2n−1 + 2n−2 + . . .) = Θ(2n+1). The space requirements are
dominated by the requirements of the first round, that is Θ(2n).

2.3 Troubleshooting with Cost Clusters without Inside Information

The problem of Troubleshooting with Postponed System Test is a special case
of Troubleshooting with Cost Clusters without Inside Information [7]. In the latter
scenario, we assume the set A of atomic actions is partitioned into a family
of ‘cost clusters’ {Cl}. To access an action within the cost cluster, additional cost
has to be paid for ‘opening’ the cluster. After opening the cluster, say C1, all
the actions A ∈ C1 are available and actions from other clusters are not available.
To access an action in a different cluster, C1 has to be closed and its actions are
not available anymore. Furthermore, it is assumed that when any cluster is open,
information about the system state is not available – the cluster has to be closed
to see whether the actions taken have fixed the fault.

Solving the troubleshooting problem requires construction of an ordered parti-
tion A1, . . . ,Ak of A, where each Aj is a subset of some C ∈ {Cl}. For Aj ⊆ Cl,
denote by cC(Aj) the cost of opening the cluster Cl. The cost of Aj including
the cluster cost is

c(Aj) = cC(Aj) +
∑

A∈Aj

c(A).

The ECR of troubleshooting sequence is computed as in Proposition 2.
The authors of [7] provide a heuristic algorithm for finding a suboptimal trou-

bleshooting sequence. A related scenario, solvable in polynomial time, is studied
in [8].

212 V. Ĺın

3 Complexity Results

We shall prove NP-hardness of the troubleshooting scenarios introduced in Sec-
tion 2 by reducing suitable scheduling problems3. Moreover, we will see that
the scheduling problems are equivalent to the troubleshooting scenarios in the
sense that the polynomial-time reductions work both ways. Therefore, algorithms
developed for the scheduling problems can be used for the troubleshooting prob-
lems without a loss of efficiency.

3.1 Reduction

We will use variants of Single Machine Scheduling with Weighted Completion
Time. The problem is formulated as follows. There are n jobs Ji to be processed
on a single machine. Each job is given with a processing time pi > 0 and weight
wi ≥ 0. We assume that processing starts at time 0 and there is no idle time
between consecutive jobs. Since the processing times pi are known and fixed,
the completion time Ci of each job Ji is well determined for any given job
sequence. The objective is to find a feasible sequence minimizing the weighted
completion time

∑
i wi · Ci.

Single Machine Scheduling with Weighted Completion Time can easily be re-
duced to Basic Troubleshooting. Identify jobs Ji with actions Ai and put

– pi −→ c(Ai),
– wi/

∑
i wi −→ P (Ai = 1).

The scheduling objective function can be written
n∑

i=1

wi · Ci =
n∑

i=1

wi ·
∑
j≤i

pi

=
n∑

i=1

pi ·
∑
j≥i

wj . (2)

Consider the troubleshooting problem. Assuming P
(∨A∈A {A = 1})= 1 under

the conditions of Proposition 1, we use Proposition 1 and rewrite the definition
of ECR:

ECR(A1, . . . , An) =
n∑

i=1

c(Ai) ·
(
1 −

∑
j<i

P (Aj = 1)
)

=
n∑

i=1

c(Ai) ·
∑
j≥i

P (Aj = 1). (3)

It is clear that Equation 3 is minimized whenever Equation 2 is minimized. ��
In analogy to Proposition 1, the Single Machine Scheduling with Weighted

Completion Time problem can be solved by sequencing the jobs in non-increasing
order of the ratios wi/pi. This result can be traced back to a 1950’s paper by
Smith [12].
3 See [3] for an overview of the field.

Extensions of Decision-Theoretic Troubleshooting 213

3.2 Troubleshooting with Cost Clusters without Inside Information

We reduce Single machine s-batching with weighted completion time [1,3]. As
above, there are n jobs given with processing time pi and weight wi. The jobs
are scheduled in batches on a single machine. A batch is a set of jobs which are
processed jointly. Processing time of a batch equals the sum of processing times
of its jobs plus a batch setup time s. Completion time Ci of a job coincides with
the completion time of the last scheduled job in its batch (completion times
of all jobs in a batch are therefore equal). The task is to find a sequence of jobs
and partition it into batches such that we minimize

∑n
i=1 wi · Ci. We sum up

properties of the batching problem in a proposition.

Proposition 4 (Albers and Brucker, 1993 [1]). Single machine s-batching
with weighted completion time is NP-hard. Given a fixed sequence of jobs, the split
into batches can be done in O(n) time. When wi = 1 or pi = p for all i, the prob-
lem becomes solvable in O(n log n) time.

Proposition 5. Troubleshooting with Postponed System Test is NP-hard, even
under the assumptions of Proposition 1.

Proof. We will use a description of solutions of the batching problem taken
from [3]. Consider a fixed but arbitrary job sequence J1, . . . , Jn. Denote the batch
setups by S. Then the solution takes on the form

S, Jλ(1), . . . Jλ(2)−1, S, Jλ(2), . . . , Jλ(k)−1, S, Jλ(k), . . . , Jn

where k is the number of batches, λ(j) is the starting index of the j-th batch,
and

1 = λ(1) < λ(2) < . . . < λ(k) ≤ n

The processing time of the j-th batch is

Pj = s +
λ(j+1)−1∑

�=λ(j)

p�.

The objective function can now be written as

n∑
i=1

wi · Ci =
k∑

j=1

Pj ·
n∑

�=λ(j)

w� (4)

We proceed with the reduction as in the beginning of Section 3.1. Using Propo-
sition 2 and assuming P

(∨
A∈A{A = 1})= 1, we rewrite

ECR(A1, . . . ,Ak) =
k∑

j=1

c(Ai) ·
∑
�≥i

P (A� = 1). (5)

The correspondence of Equations 5 and 4 is obvious. ��

214 V. Ĺın

We can also easily perform the reduction in the opposite direction. Therefore,
Proposition 4 applies to Troubleshooting with Postponed System Test (under
the assumptions of single fault, and actions conditionally independent given
faults). In particular, the O(n) bound on partitioning a fixed sequence of actions
is an improvement over Θ(n3) given in [9].

Corollary 1 (of Proposition 5). Troubleshooting with Cost Clusters without
Inside Information is NP-hard, even under the assumptions of Proposition 1.

Proof. Consider a troubleshooting problem where all the actions belong to a sin-
gle cost cluster C1 with the cost of opening C1 being cD. This problem is equiv-
alent to Troubleshooting with Postponed System Test. ��
Remark 1. The decision variants of all the troubleshooting scenarios studied in
this paper clearly belong to NP – a nondeterministic procedure can guess a
troubleshooting sequence and then check in polynomial time whether the ECR
is lower than a predefined constant. Therefore, by Proposition 5 and Corollar-
ies 1 and 2, the decision variants of the respective troubleshooting scenarios are
NP-complete.

3.3 Troubleshooting with Precedence Constraints

We now introduce Single Machine Scheduling with Weighted Completion Time
and Precedence Constraints [6]. The problem is the same as Single Machine
Scheduling with Weighted Completion Time, with an additional requirement that
the sequencing of the jobs has to be consistent with precedence constraints im-
posed by a given acyclic directed graph G = (V, E). Each vertex i ∈ V is
identified with a job. Job Ji is to precede job Jj if there is a directed path from
i to j in G.

Proposition 6 (Lawler, 1978 [6]). Single Machine Scheduling with Weighted
Completion Time and Precedence Constraints is NP-complete, even if all wi = 1
or all pi = 1.

Corollary 2. Basic Troubleshooting with Precedence Constraints is NP-hard,
even under the assumptions of Proposition 1.

Proof. Use the reduction from Section 3.1. ��
Next, we define a class of series parallel directed graphs for which Single Machine
Scheduling with Weighted Completion Time and Precedence Constraints is known
to be polynomial. This class subsumes chains and rooted trees. As such, it is quite
useful for applications.

Definition 2 (MSP – Minimal Series Parallel Graph, [15]). The graph
consisting of a single vertex and no edges is MSP.

If directed graphs G1 = (V1, E1) and G2 = (V2, E2) are MSPs, so is either of
the directed graphs constructed by the following operations:

Extensions of Decision-Theoretic Troubleshooting 215

– Parallel composition: G = (V1 ∪ V2, E1 ∪ E2).
– Series composition: G = (V1 ∪ V2, E1 ∪ E2 ∪ N1 × R2). Here N1 is the set

of sinks of G1 (i.e., vertices without successors), and R2 is the set of sources
of G2 (i.e., vertices without predecessors).

Recall the concept of transitive closure – given a directed graph G = (V, E),
its transitive closure GT = (V, ET) is obtained by adding a directed edge (u, v)
for all u and v such that there is a path from u to v in G and (u, v) /∈ E.
A transitive reduction of G = (V, E) is a minimal graph GR defined on V such
that the transitive closures of G and GR are the same.

Definition 3 (GSP – General Series Parallel Graph, [15]). A directed
graph is GSP if its transitive reduction is an MSP.

Proposition 7 (Lawler, 1978 [6]). Single Machine Scheduling with Weighted
Completion Time and Precedence Constraints is solvable in O(n · log n) time
when the precedence graph G is a GSP.

Reversing the reduction, we get the following easy consequence.

Corollary 3. Basic Troubleshooting with Precedence Constraints is solvable in
O(n · log n) time under the following conditions:

– all the assumptions of Proposition 1 are satisfied,
– P

(∨A∈A {A = 1})= 1,
– the precedence graph is a GSP.

4 Conclusions and Future Research

We have established a link to the well developed field of Scheduling, open-
ing the possibility of applying results of decades of research in Scheduling to
Troubleshooting. We have reduced scheduling problems to derive proofs of NP-
hardness for three troubleshooting scenarios. The scenario of Basic Troubleshoot-
ing with Precedence Constraints is novel. We believe this scenario is useful in
practice. Moreover, it is polynomial for a wide class of graphs encoding the
precedence relation.

An interesting problem for future research is that of approximability [10]
of troubleshooting problems: for some special cases there might exist approx-
imation algorithms with performance guarantees, whereas for others, finding
such an approximation would amount to proving P = NP.

Since most realistic troubleshooting scenarios are NP-hard, it is worthwhile
to study heuristic solution algorithms [17,7,9] and identify worst-case conditions,
under which they perform badly. To benchmark the heuristic algorithms, we can
use Dynamic Programming introduced in Section 2.2.

Acknowledgments. I would like to thank Thorsten J. Ottosen and Jǐŕı Vomlel
for valuable discussions over the subject matter of the paper. I also thank the
anonymous reviewers for their comments.

216 V. Ĺın

References

1. Albers, S., Brucker, P.: The Complexity of One-Machine Batching Problems. Dis-
crete Applied Mathematics 47, 87–107 (1993)

2. Breese, J.S., Heckerman, D.: Decision-Theoretic Troubleshooting: A Framework
for Repair and Experiment. In: Proceedings of Twelfth Conference on Uncertainty
in Artificial Intelligence, pp. 124–132. Morgan Kaufmann, San Francisco (1996)

3. Brucker, P.: Scheduling Algorithms, 3rd edn. Springer, Heidelberg (2001)
4. Jensen, F.V., Kjærulff, U., Kristiansen, B., Langseth, H., Skaanning, C., Vomlel, J.,

Vomlelová, M.: The SACSO Methodology for Troubleshooting Complex Systems.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing 15, 321–
333 (2001)

5. Kalagnanam, J., Henrion, M.: A Comparison of Decision Analysis and Expert
Rules for Sequential Diagnosis. In: Proceedings of the Fourth Annual Conference
on Uncertainty in Artificial Intelligence (UAI 1988), pp. 271–282. North-Holland,
Amsterdam (1990)

6. Lawler, E.L.: Sequencing Jobs to Minimize Total Weighted Completion Time Sub-
ject to Precedence Constraints. Annals of Discrete Mathematics 2, 75–90 (1978)

7. Langseth, H., Jensen, F.V.: Heuristics for Two Extensions of Basic Troubleshoot-
ing. In: Proceedings of Seventh Scandinavian Conference on Artificial Intelligence,
SCAI 2001, pp. 80–89. IOS Press, Amsterdam (2001)

8. Ottosen, T.J., Jensen, F.V.: The Cost of Troubleshooting Cost Clusters with In-
side Information. In: Proceedings of 26th Conference on Uncertainty in Artificial
Intelligence (UAI 2010), pp. 409–416. AUAI Press (2010)

9. Ottosen, T.J., Jensen, F.V.: When to Test? Troubleshooting with Postponed Sys-
tem Test. Technical Report 10-001, Department of Computer Science, Aalborg
University, Denmark (2010)

10. Papadimitriou, C.H.: Computational complexity. Addison-Wesley Publishing Com-
pany, Reading (1994)

11. Sedgewick, R.: Algorithms in C. Addison-Wesley Publishing Company, Reading
(1998)

12. Smith, W.E.: Various Optimizers for Single-Stage Production. Naval Research Lo-
gistics Quarterly 3, 59–66 (1956)

13. Skaanning, C., Jensen, F.W., Kjærulff, U.: Printer Troubleshooting Using Bayesian
Networks. In: IEA/AIE 2000 Proceedings of the 13th International Conference
on Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems, pp. 367–379. Springer, Heidelberg (2000)

14. Srinivas, S.: A Polynomial Algorithm for Computing the Optimal Repair Strategy
in a System with Independent Component failures. In: Proceedings of Eleventh
Conference on Uncertainty in Artificial Intelligence, pp. 515–552. Morgan Kauf-
mann, San Francisco (1995)

15. Valdes, J., Tarjan, R.E., Lawler, E.L.: The Recognition of Series Parallel Digraphs.
In: STOC 1979 Proceedings of the Eleventh Annual ACM Symposium on Theory
of Computing, pp. 1–12. ACM, New York (1979)

16. Vomlelová, M.: Complexity of Decision-Theoretic Troubleshooting. International
Journal of Intelligent Systems 18, 267–277 (2003)

17. Vomlelová, M., Vomlel, J.: Troubleshooting: NP-hardness and Solution Methods.
Soft Computing Journal 7(5), 357–368 (2003)

	Extensions of Decision-Theoretic Troubleshooting
	Introduction
	Troubleshooting Scenarios
	Basic Troubleshooting
	Troubleshooting with Precedence Constraints.

	Troubleshooting with Postponed System Test
	Dynamic Programming.

	Troubleshooting with Cost Clusters without Inside Information

	Complexity Results
	Reduction
	Troubleshooting with Cost Clusters without Inside Information
	Troubleshooting with Precedence Constraints

	Conclusions and Future Research

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

